the Fourier transform and applications

Michael Klingbeil
michael@klingbeil.com
analyzing complex waveforms

- Jean-Baptise Joseph Fourier ~1822
- Any periodic complex waveform can be represented as a sum of *harmonically* related sinusoids each with a particular amplitude (and phase).
- The Fourier transform takes a waveform and computes the exact amplitudes of the sinusoids that comprise the waveform.
- The transform is (theoretically) lossless.
definition of the Fourier transform

- forward transform

\[X(f) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi ift} \, dt \]

- inverse transform

\[x(t) = \int_{-\infty}^{+\infty} X(f)e^{2\pi ift} \, df \]
what does this mean?
forward transform

• beginning with the forward transform:

\[X(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i ft} \, dt \]

• \(x(t) \) is our time domain audio signal
• we are multiplying it by \(e^{-2\pi i ft} \) (to be explained)
• \(2\pi \) and \(i \) are constants
• \(f \) is a value which corresponds to frequency
• We are integrating (adding up) over all time values (from \(-\infty\) to \(+\infty\)) at some specifically chosen frequency value \(f \)
complex exponentials

• What about \(e^{2\pi ift} \)?
• \(e \) is the base of the natural logarithm
 • \(e \approx 2.718281828459045\ldots \)
• \(i \) is the complex number
 • \(i = \sqrt{-1} \)
• Euler’s identity

\[
e^{i\theta} = \cos \theta + i \sin \theta
\]

• follows from the series expansions for \(e^x \), \(\sin \) and \(\cos \)
computing fourier transforms

• the transforms are defined for…
 – continuous (non-sampled) functions of time $x(t)$
 – signals of infinite length (from $-\infty$ to $+\infty$)

• computers work with…
 – discrete sampled waveforms
 – finite length signals
Discrete Fourier Transform

Definition:

\[
DFT(k) = \frac{1}{N} \sum_{n=0}^{N} x(n) e^{-2\pi i k \frac{n}{N}} \quad k = 0, 1, 2, \ldots, N - 1
\]

\[
= \frac{1}{N} \sum_{n=0}^{N} x(n) \left[\cos 2\pi k \frac{n}{N} - i \sin 2\pi k \frac{n}{N} \right]
\]
Discrete Fourier Transform

- takes a sampled signal $x(n)$ of N samples
- for each frequency value k of N discrete frequencies:
 - pointwise multiply waveform samples by a cosine wave at frequency k and adds up the results
 - pointwise multiply waveform samples by a sine wave at frequency k and adds up the results

$$DFT(k) = \frac{1}{N} \sum_{n=0}^{N} x(n)[\cos 2\pi k \frac{n}{N} - i \sin 2\pi k \frac{n}{N}]$$

$$= \frac{1}{N} \sum_{n=0}^{N} x(n) \cos 2\pi k \frac{n}{N} - i \frac{1}{N} \sum_{n=0}^{N} x(n) \sin 2\pi k \frac{n}{N}$$

$$= a_k + ib_k$$
real and imaginary components

- The DFT gives us two values per frequency:
 - real
 - imaginary

\[DFT(k) = a_k + ib_k \quad k = 0, 1, 2, \ldots, N - 1 \]

- the DFT outputs complex numbers
- all cosine sums are real valued
- all sine sums are imaginary
 - (multiplied by the imaginary number \(i \))
Intuitive Interpretation

• start with a waveform to be analyzed
• choose a set of reference sine and cosine waves at discrete frequencies
• “compare” the waveform to each reference sine and cosine wave by multiplying them point by point and adding up the values
• portions of the waveform that are like the reference sinusoid will result in larger sums
• the reference sinusoid will “resonate” with waveform components that are close in frequency and phase
interpreting complex values

• both real and imaginary components represent the same frequency \[DFT(k) = a_k + ib_k \]
• but relative to different phases \[\cos(\theta) = \sin(\theta + \pi/2) \]
• cosine and sine components represent the instantaneous position of a complex sinusoid
• this position can be graphed on the complex plane
• the magnitude (amplitude) of a complex sinusoid is the distance from the origin to the complex point \((a_k, b_k)\)

\[
A_k = \sqrt{a_k^2 + b_k^2}
\]
and phase

- the phase is the angle of rotation (θ) of the complex point
- recall the definition of the tangent function:
 \[
 \tan \theta = \frac{b_k}{a_k}
 \]
- so...
 \[
 \theta = \tan^{-1} \frac{b_k}{a_k}
 \]
- where \tan^{-1} is the inverse tangent function
DFT summary

• Input: sampled signal \(x(n) \) of length \(N \)
• Output: \(N \) pairs of values
 \(a_k, b_k \) with \(k = 0 \ldots N - 1 \)
• there are \(k \) periods of the sinusoid in the space of \(N \) samples
 – i.e. for \(k = 2 \), there are 2 cycles per \(N \) samples
 – for \(k = 13 \), there are 13 cycles per \(N \) samples, and so on
• each value of \(k \) corresponds to a frequency bin
• the spectrum is discretely sampled at each frequency bin
Fast Fourier Transform (FFT)

- DFT in its direct form is slow to compute
- FFT is an optimized DFT where N is restricted to powers of 2 ($N = 2^p$ for some positive integer p)

- typical values of N for audio work at a sampling rate of 44100
 - 512
 - 1024
 - 2048
 - 4096
 - 8192
FFT summary

• Input: sampled signal $x(n)$ of length N where $N = 2^p$
• Output: N pairs of values a_k, b_k for each frequency bin k
• Magnitude at frequency bin k
 \[A_k = \sqrt{a_k^2 + b_k^2} \]
• Phase at frequency bin k
 \[\theta_k = \tan^{-1} \frac{b_k}{a_k} \]
Example

- for sampling rate 44100 and FFT size N = 1024
- for frequency bin k there are k cycles per 1024 samples
- the frequency in hertz at bin k is given by
 \[\text{Hz}_k = k \frac{44100}{1024} \]
- the spectrum is sampled at intervals of 43.06 Hz
- Example: at bin 2 we have $a = 0.345$, $b = -0.213$
- The magnitude and phase corresponding to a cosine wave at 86.133 Hz are

 \[
 \text{Magnitude} = \sqrt{0.345^2 + (-0.213)^2} = 0.4054553 \\
 \text{Phase} = \tan^{-1} \left(\frac{-0.213}{0.345} \right)
 \]
real spectrum symmetry
overlap-add analysis/resynthesis

from Miller Puckette, Theory and Techniques of Electronic Music p. 268
overlapping analysis

- each input signal block is smoothed by a window function $w(n)$
- this reduces the discontinuity at the block boundary at the expense of some frequency resolution
- each successive windowed block is overlapped in time (overlap factor)
- each analyzed windowed block is called a frame
- the amount of time between each frame is called the hop size H
- example: $N = 2048$ samples, overlap 4x
 $H = 512$ samples
DFT applications: the phase vocoder

- each bin of the FFT samples the frequency spectrum on a relatively coarse grid
 - (43.06 Hz in the case of SR=44100, FFT size=1024)

- Idea: use the time varying phase values to improve the frequency estimates

- compare the phase θ_k in bin k at frame n to the corresponding phase at frame $n-1$

- the change in phase has a correspondence to a change in frequency
phase deviation

• change in phase per unit time is a frequency measurement
phase deviation: examples

- consider analyzing a cosine of 258.39844 Hz
- $SR = 44100$ samples/sec.
- FFT size $N = 1024$, overlap 4x, hop size $H = 256$
- the bin spacing for this FFT is 43.06 Hz
- the cosine is aligned at the center of bin 6
- let the phase in bin 6 at frame n be 0.0
- what is the expected phase in bin 6 at frame $n+1$?
phase deviation: examples

- convert 258.39844 Hz to radians per hop

\[
\frac{258.39844 \text{ cycles}}{1 \text{ sec.}} \cdot \frac{2\pi \text{ radians}}{1 \text{ cycles}} \cdot \frac{1 \text{ sec.}}{44100 \text{ samples}} \cdot \frac{256 \text{ samples}}{1 \text{ hop}} = \frac{3\pi \text{ radians}}{1 \text{ hop}}
\]

- so phase will increase a distance of 3π radians every analysis hop
phase deviation: examples

- now consider the same situation but with a cosine at 280 Hz
- what will happen to the phase in bin 6?

\[
\frac{280 \text{ cycles}}{1 \text{ sec.}} \cdot \frac{2\pi \text{ radians}}{1 \text{ cycles}} \cdot \frac{1 \text{ sec.}}{44100 \text{ samples}} \cdot \frac{256 \text{ samples}}{1 \text{ hop}} = \frac{3.2507937\pi \text{ radians}}{1 \text{ hop}}
\]

- the sinusoid is at a higher frequency so its phase is increasing faster
- the phase is running 0.25079\pi \text{ radians per hop faster}
phase vocoder frequency estimation

- at frame n subtract the expected phase of a sinusoid perfectly centered on the analysis bin from the actual phase
- expected phase is computed based on the previous phase in frame $n-1$
- the difference is the *phase deviation*
- in our example the phase deviation was 0.25079π
- converting to cycles per second:

$$\frac{0.2507937\pi \text{ radians}}{1 \text{ hop}} \cdot \frac{1 \text{ cyc.}}{2\pi \text{ rad.}} \cdot \frac{1 \text{ hop}}{256 \text{ samp.}} \cdot \frac{44100 \text{ samp.}}{1 \text{ sec.}} = 21.6015663 \text{ Hz}$$
phase vocoder frequency estimation

- a frequency deviation of 21.6015663 Hz is added to the center frequency of bin 6

- 258.39844 Hz + 21.6015663 Hz = 280 Hz

- summary:

- computing phase deviations allow us to find the actual frequency of the analyzed sinusoids
phase vocoder applications:

- resynthesize at a different rate to time compress/expand without changing the pitch
- adjust the frequencies to transpose without changing the duration
- resynthesis can be done with oscillators (slow)
- resynthesis can be done with inverse FFTs (fast)
- the subjective quality of the resynthesis is largely dependant on how “well” the time varying phases are managed and updated